Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity.

نویسندگان

  • Nicholas S Wigginton
  • Alexandre de Titta
  • Flavio Piccapietra
  • Jan Dobias
  • Victor J Nesatyy
  • Marc J F Suter
  • Rizlan Bernier-Latmani
چکیده

Here we describe results from a proteomic study of protein-nanoparticle interactions to further the understanding of the ecotoxicological impact of silver nanoparticles (AgNPs) in the environment. We identified a number of proteins from Escherichia coli that bind specifically to bare or carbonate-coated AgNPs. Of these proteins, tryptophanase (TNase) was observed to have an especially high affinity for both surface modifications despite its low abundance in E. coli. Purified TNase loses enzymatic activity upon associating with AgNPs, suggesting that the active site may be in the vicinity of the binding site(s). TNase fragments with high affinities for both types of AgNPs were identified using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Differences in peptide abundance/presence in mass spectra for the two types of AgNPs suggest preferential binding of some protein fragments based on surface coating. One high-binding protein fragment contained a residue (Arg103) that is part of the active site. Ag adducts were identified for some fragments and found to be characteristic of strong binding to AgNPs rather than association of the fragments with ionic silver. These results suggest a probable mechanism for adhesion of proteins to the most commonly used commercial nanoparticles and highlight the potential effect of nanoparticle surface coating on bioavailability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergistic Activity of Green Silver Nanoparticles with Antibiotics

ObjectiveThe present work represents the green synthesis of silver nanoparticles using Withania coagulans extract and its antibacterial property. The synergy, additive, bacteriostatic and bactericidal effect of silver nanoparticles was determined against Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Proteus vulgaris, Salmonella typhi, and Vibrio cholerae. Methods <...

متن کامل

Mushrooms (Agaricus bisporus) mediated biosynthesis of sliver nanoparticles, characterization and their antimicrobial activity

In this paper we report an eco-friendly route for the synthesis of sliver nanoparticles using Agaricus bisporus (white button mushroom) extract. The synthesized silver nanoparticles were confirmed and characterized by UV-Visible spectrum of the aqueous solution containing silver ions showed a peak at 420 nm corresponding to the surface plasmon absorbance of silver nanoparticles. Transm...

متن کامل

Mushrooms (Agaricus bisporus) mediated biosynthesis of sliver nanoparticles, characterization and their antimicrobial activity

In this paper we report an eco-friendly route for the synthesis of sliver nanoparticles using Agaricus bisporus (white button mushroom) extract. The synthesized silver nanoparticles were confirmed and characterized by UV-Visible spectrum of the aqueous solution containing silver ions showed a peak at 420 nm corresponding to the surface plasmon absorbance of silver nanoparticles. Transm...

متن کامل

Evaluation of Anti biofilm and Antibiotic Potentiation Activities of Silver Nanoparticles Against some Nosocomial Pathogens

Nowadays silver nanoparticles (AgNPs) are used as antimicrobial due to its well known physical, chemical, and biological properties. A large collection of bacterial cells adhering to a surface is called bacterial biofilm. Exposure to silver nano particles (AgNPs) may prevent colonization of new bacteria onto the biofilm. In the present work, we have investigated whether the biofilm format...

متن کامل

Gold and silver nanoparticles for biomolecule immobilization and enzymatic catalysis

In this work, a simple method for alcohol synthesis with high enantiomeric purity was proposed. For this, colloidal gold and silver surface modifications with 3-mercaptopropanoic acid and cysteamine were used to generate carboxyl and amine functionalized gold and silver nanoparticles of 15 and 45 nm, respectively. Alcohol dehydrogenase from Thermoanaerobium brockii (TbADH) and its cofactor (NAD...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 44 6  شماره 

صفحات  -

تاریخ انتشار 2010